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Abstract. Data assimilation is an essential approach to improve the predictions of land surface models. Due to the 

characteristics of single-column models, assimilation of land surface information has mostly focused on improving the 

assimilation of single-point variables. However, land surface variables affect short-term climate more through large-scale 

anomalous forcing, so it is indispensable to pay attention to the accuracy of the anomalous spatial structure of land surface 15 

variables. In this study, a land surface image assimilation system capable of optimizing the spatial structure of the 

background field is constructed by introducing the curvelet analysis method and taking the similarity of image structure as a 

weak constraint. The ERA5_Land soil moisture reanalysis data are used as ideal observation for the preliminary 

effectiveness validation of the image assimilation system. The results show that the new image assimilation system is able to 

well absorb the spatial structure information of the observed data and has a remarkable ability to adjust the spatial structure 20 

of soil moisture in the land model. The spatial correlation coefficient between model surface soil moisture and observation 

has increased from 0.39 to about 0.67 after assimilation. By assimilating the surface soil moisture data and combining with 

the model physical processes, the image assimilation system can also gradually improve the spatial structure of deep soil 

moisture, with the spatial correlation coefficient between model soil moisture and observation increased from 0.35 to about 

0.57. The forecast results show that the positive assimilation effect could be maintained for more than 30 days. The results of 25 

this study adequately demonstrate the application potential of image assimilation system in the short-term climate prediction. 
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1 Introduction 

Soil moisture not only affects surface processes such as dust (Lei et al., 2005), but also progressively influences climate 30 

change by altering surface albedo, heat capacity, and sensible heat and latent heat transported to the atmosphere (Lin et al., 

2001; Li et al., 2019; Zhou et al., 2020a). Soil moisture changes slowly relative to the atmospheric variables, that is, the soil 

moisture has long-term memory. The initial soil moisture anomaly in the sub-seasonal to seasonal forecasting system can be 

transferred into the forecast, and thus it is an important source of sub-seasonal climate predictability (Koster et al., 2020). 

Accurate initial land surface conditions can remarkably improve the accuracy of climate and hydrological projections in 35 

short-term climate prediction, especially in fully coupled numerical models (Zhan and Lin, 2011；Wang and Cui, 2018; 

Zheng et al., 2018; Crow et al., 2020; Reichle et al., 2021; Cui and Wang, 2022). 

Based on the comprehensive consideration of observation and model errors, the land surface data assimilation method 

effectively integrates the model background field and various types of observational data with different spatio-temporal 

distributions and error characteristics, so as to obtain the optimal initial conditions of soil moisture (Li et al., 2020a; Naz et 40 

al., 2020). Research on land surface data assimilation methods has gained the attention of meteorologists around the world. 

Initially, the European Centre for Medium-Range Weather Forecasts (ECMWF) used the nudging method to adjust land 

surface variables based on the relationship between the forecast errors of atmospheric variables (e.g. specific humidity at 

near-surface level) and soil moisture errors (Douville et al., 2000). In order to make the assimilated analysis fields better 

coordinated with other variables of the model, Mahfouf (1991) proposed the optimal interpolation (OI) scheme to assimilate 45 

near-surface temperature and humidity observations. The four-dimensional variational data assimilation (VDA) method has 

also been applied in the study of land surface data assimilation (Reichle et al., 2001). However, for the complex land surface 

models with strong nonlinearity, it is difficult to compile adjoint models (Dunne and Entekhabi, 2005). Therefore, the VDA 

is barely used in land surface assimilation. The Kalman filter-like assimilation with no adjoint models is more widely used 

for land surface data assimilation (Tian et al., 2008; Jin and Li, 2009; Jia et al., 2010; Shi et al., 2011; Sabater et al., 2019; 50 

Tangdamrongsub et al., 2020). 

Soil moisture assimilation has been conducted at different spatial scales using a range of methods such as the VDA and 

Kalman filtering (Gruber et al., 2018; De Santis et al., 2021; Sabater et al., 2019). Stable assimilation also remarkably 

improves soil moisture prediction (Khaki et al., 2020). However, in order to accommodate the features of the single-column 

land surface model, the current land surface assimilation system is a single-column assimilation system, which neglects the 55 

spatial continuity of soil variables. On the timescale of short-term climate change, soil moisture is commonly responsible for 

the abnormal changes in short-term climate through long-term and large-scale anomalous forcing (Lin et al., 2008; Zhong et 

al., 2020; Dirmeyer et al., 2021). Therefore, improving the accuracy of the anomalous spatial structure of land surface 

variables, which serve as the lower boundary conditions of numerical models, will help to better predict short-term climate 

change caused by soil moisture anomalies. Ideally, a single-column assimilation system would also be able to reproduce the 60 

correct spatial-structure features of soil moisture anomalies, if the assimilation can obtain the closest result to the true value 
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at each column. However, in reality, the observation quality varies sharply across regions, and the strong spatial 

heterogeneity of soil variables also tends to cause large spatial variations in the accuracy of surface variables simulated by 

the land surface model (Li, 2013; Li et al., 2020b). This leads to the regional differences in the accuracy of the estimations of 

observation error and background error in the single-column assimilation, and ultimately causes discontinuities in the spatial 65 

structure of the anomalies in the analyzed soil moisture fields. Zhou et al. (2020b) also pointed out that most current soil 

moisture assimilation methods eliminate the systematic biases between observation and simulation by applying the pixel-by-

pixel scale transformation. This treatment discards the crucial spatial information contained in the observation, and affects 

the application of soil moisture in numerical weather prediction, flood forecasting and drought monitoring. Therefore, while 

data assimilation improves the accuracy of single-point soil variables, appropriately adjusting the spatial structure of soil 70 

analysis variables is a critical development direction for land surface assimilation systems. 

With the continuous development of meteorological observation techniques, more and more meteorological information 

can be displayed in the form of images with fine spatio-temporal resolutions, and their continuous dynamic changes 

generally allow us to better understand the observed variables. However, the huge amount of satellite observation images for 

the earth system are not sufficiently utilized in the current data assimilation system (Vidard et al., 2008). Stroud et al. (2009) 75 

developed several assimilation schemes that combined the images obtained from the Sea-viewing Wide Field Sensor with a 

two-dimensional sediment transport model of Lake Michigan, which considerably improved the predictions of sediment 

concentrations in southern Lake Michigan. In order to quantitatively assimilate the structural information contained in 

images or image sequences into the numerical model, Le Dimet et al. (2015) extracted the key structural observation 

information in the images by using curvelet transformation as the observation operator, and improved the prediction results 80 

of the shallow water equation model through the VDA approach. Titaud et al. (2010) also found that the direct VDA of 

image sequences is able to reconstruct initial vortices with highly correct positions, sizes and profiles by using the curvelet 

transform as the observation operator. Currently, direct assimilation of image sequences is primarily used to predict the 

evolution of geophysical fluids. If the structural information in the observed images can be introduced into the land surface 

data assimilation system as observations, the accuracy of the spatio-temporal distribution structure of soil moisture in the 85 

model can be targetedly improved. The purpose of this study is to construct a land surface image assimilation system based 

on the theoretical frame of VDA, so as to realize the direct adjustment of the spatial structure of land surface variables and 

improve the accuracy of the initial soil moisture values, by integrating the observation information of image sequences and 

the priori knowledge from numerical models. In this study, an attempt is made to test the effectiveness of the image 

assimilation module in improving the spatial structure of soil moisture at the land surface in a VDA framework, and the 90 

related research methodology can be implemented in the alternative assimilation framework as well. 

The paper is organized as follows. Section 2 mainly introduces how to select appropriate image observation operators and 

establish an image assimilation system under the VDA framework. Then, the error characteristics of the image observation 

operators are systematically analyzed. The land surface model and the observational data used in the assimilation system are 

also briefly described in section 2. Section 3 presents the experimental designs, and analyzes the error characteristics of 95 
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background field and observation data in detail. The results of the idealized experiments are shown in section 4 to verify the 

effectiveness of the image assimilation system in improving the predictions of the land surface model. Section 5 gives the 

summary and discussion. 

 

2 Construction of image assimilation system 100 

 

2.1 Land surface model 

The common land model (CoLM) developed by Dai et al. (2003) was selected in this study. By considering biophysical, 

biochemical, ecological and hydrological processes, this model well describes the transfer processes of energy, water and 

carbon dioxide among soil, vegetation, snow cover and atmosphere, allowing the simulation of soil temperature, soil 105 

moisture, runoff, heat flux, and other variables. In recent years, the CoLM has incorporated additional physical processes 

such as glaciers, lakes, wetlands and dynamic vegetation. It has also been successfully implemented in several global 

atmospheric models (Yuan and Liang, 2011; Ji et al., 2014; Zhang et al., 2020; Yuan and Wei, 2022). 

The surface spatial heterogeneity of the CoLM is manifested as a nested sub-grid hierarchy, with the grid units consisting 

of multiple land units and plant function types (PFTs). The bio-geophysical processes of the CoLM are simulated on a single 110 

soil-vegetation-snow column, and each sub-grid has its own predictor variables. Grid-averaged atmospheric forcing is used 

to force all sub-grid cells within a grid cell. The model used in this study has a horizontal resolution of about 1.4° × 1.4°. 

There are ten unevenly spaced soil layers and five snow layers in the vertical direction. In this study, soil moisture is 

calculated by using the equation of one-dimensional soil water vertical motion: 

 115 
!"
!#
= − !$

!%
− 𝐸 − 𝑅&' ,                                                                                                                                              (1) 

 

where 𝜃 is the volumetric water content of the soil (unit: m³·m−³), 𝑞 the soil water flux calculated by the Darcy theorem, 𝐸 

the rate of evaporation (unit: mm·s−1), 𝑅!" the rate of thawing or freezing, and 𝑧 the vertical distance from the soil layer to 

the ground ( 𝑞 and 𝑧 is downward-positive). 120 

Atmospheric forcing conditions provide constraints on land-surface models. The atmospheric forcing dataset used to drive 

the CoLM in this study includes the downward short-wave solar radiation at surface, downward long-wave radiation, near-

surface air temperature, specific humidity, precipitation rate, surface atmospheric pressure, U-component wind speed, and V-

component wind speed. It has a temporal resolution of three hours (at 0000 UTC, 0300 UTC, 0600 UTC, etc.) and the spatial 

resolution is T62 (about 1.875°). 125 
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In this study, the CoLM is run in the offline mode cyclicly driven by the observation-based forcing data from 1948 to 2020 

for 360 years. The water content of the deepest layer changes extremely slowly over the last 50 years, and the model can be 

considered to be in equilibrium. 

2.2 Framework of image assimilation system based on variational data assimilation 

This study is based on the framework of three-dimensional VDA (3D-VDA). The main principle of 3D-VDA is to simplify 130 

data assimilation to a quadratic functional minimization problem, which characterizes the deviations between analysis and 

observational fields as well as between analysis and background fields. 

Assuming that 𝑥 denotes the vector of analysis variables, 𝑥# denotes the background field, and 𝑥$ denotes the analysis 

field, then the variation of 𝑥 with time can be expressed as: 

 135 

%𝑥
(𝑡) = 𝑀+𝑥(𝑡(), + 𝜂(𝑡)

𝑥(𝑡() = 𝑈
,                                                                                                                                       (2) 

 

where 𝑀 denotes the numerical prediction model, and 𝑡 and 𝑡% represents the prediction time and start time of the model, 

respectively. 𝜂(𝑡) is the model error at moment 𝑡, 𝑈 ∈ ℝ denotes the initial conditions of the model, and ℝ represents the 

space in which the state variables are located. 140 

If a direct or indirect observation vector of length 𝐿 is represented by 𝑦& ∈ ℚ and the observation space is represented by 

ℚ, then the relationship between observations and state variables can be expressed as follows : 

 

𝑦)(𝑡) = 𝐻+𝑥(𝑡), + ℰ ,                                                                                                                                             (3) 

 145 

where 𝐻:	ℝ → ℚ is the observation operator that represents a mapping from the model space to the observation space. The 

observation operator is simplified to a simple interpolation operator when 𝑦& and 𝑥 are the same type of physical variable. If 

the two have different physical properties, the observation operator is a mapping operator with some complex structure that 

transforms the model space into the observation space. ℰ represents observation error. The goal of variational assimilation is 

to determine the model state at time 𝑡% , so that the sum of the deviation of state variable from background field and the 150 

deviation of simulated observation based on model variable from actual observation, is minimized under the premise of 

additional constraints, that is, to find an analysis field 𝑥$(𝑡%) which minimizes the following quadratic objective function 𝐽. 

 

𝐽(𝑥) = *
+
[𝑥 − 𝑥,]-𝐵.*[𝑥 − 𝑥,] +

*
+
[𝐻(𝑥) − 𝑦)]-(𝑂 + 𝐹).*[𝐻(𝑥) − 𝑦)] ,                                                         (4) 

 155 
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Where 𝐵 , 𝑂 and 𝐹 are respectively the error covariance matrixes of background field, observation data and observation 

operator, which are known as prior information. 𝐵'( are the inverse of the background error covariance matrix with order 

𝑁 ×𝑁, and 𝑁 is the freedom degree of the analysis field. (𝑂 + 𝐹)'( is the inverse of the observation error covariance matrix 

with order 𝐿 × 𝐿. 

During minimizing the above objective function, the optimal analytical variable is 𝑥 = 𝑥$  when ∇)𝐽(𝑥$) = 0 . It 160 

represents the optimal estimate of the true atmospheric state under given background fields, observations, and their error 

information. 

Images are generally characterized by the features of observation variables, such as geometry and distribution. From a 

“mathematical” point of view, images are usually considered to be real-valued functions of consecutive real variables, so 

they can be processed by using mathematical tools. In this case, the “numerical image” is a discrete version of the final 165 

processed mathematical image (Le Dimet et al., 2014). 

The so-called image assimilation refers to the introduction of a weak constraint on the similarity between the structure of 

the observed and simulated images in the VDA, so that the image observations are used together with the conventional 

observations to compute the optimal analysis variables. Thus, the cost function for the 3D-VDA can be written in the 

following form: 170 

 

𝐽(𝑥) = 𝐽/ + 𝐽0 + 𝐽1 =
*
+
(𝑥) − 𝑥,)-𝐵.*(𝑥) − 𝑥,)9:::::::;:::::::<
2)3453#6)378	2):#	)&	;!

+ *
+
(𝐻(𝑥)) − 𝑦))-(𝑂 + 𝐹).*(𝐻(𝑥)) − 𝑦))9::::::::::::;::::::::::::<

2)3453#6)378	2):#	)&	;"

+

*
+
+𝐻<→:(𝑓)) − 𝐻ℝ→:(𝑥,),

-(𝐻<→:(𝑓)) − 𝐻ℝ→:(𝑥,))9:::::::::::::::;:::::::::::::::<
1'7?5	2):#	;#

 ,                                                                                                (5) 

               

 175 

where 𝐽* and 𝐽+ denote the background and observation terms in the conventional cost function, and 𝐽, represents the added 

image observation term. In the image observation term 𝑓(𝑡) ∈ 𝐹, 𝑓% represents the frame-wise observation image of the 

image dynamic observation system at moment 𝑡%, which belongs to the image observation space 𝐹. 𝑠 represents the image 

space under the mathematical definition. The image structure operator 𝐻-→/ represents the mapping from the image space to 

the structure-defined mathematical space, that is, the structural information extracted from the image observations, which 180 

represents the multi-scale geometric features of the image. The operator 𝐻ℝ→/ implies a mapping from the space of state 

variables to the mathematical space where the structure resides, which represents obtaining the same type of structural 

information from the background field output by the model. 
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2.3 Curvelet multiscale analysis method 

From the above equations, it is clear that the image structure operator is a key technique for the image assimilation system. 185 

The important information in an image is mainly located in the discontinuities of the image, which can be well described by 

the spectral space, and thus the image can be quantitatively described by the spectral transformation coefficients of the image. 

The curvelet transform is exactly a suitable multi-scale transform analysis method, which is not only capable of time-

frequency analysis, but also has strong directional selection and discrimination capabilities (Titaud et al., 2010). 

   The curvelet transform takes the inner product of the basis function and the signal to achieve a sparse representation of the 190 

signal. In the two-dimensional space 𝑅1, the spatial variable is denoted by 𝑥 and the parent wave is denoted by 𝜑2(𝑥). Thus, 

the curve wave coefficient is the inner product of the function 𝑓 ∈ 𝐿1(𝑅1) and the curve wave 𝜑2,4,5:  

 

𝑐(𝑗, 𝑙, 𝑘) ∶= 〈𝑓, 𝜑@,8,B〉 = ∫ 𝑓(𝑥)𝜑C,8,B(𝑥)HHHHHHHHHHH𝑑DE$ ,                                                                                                          (6) 

 195 

where 𝑗, 𝑙 and 𝑘 are the scale, direction and position parameters, respectively, and the biggest difference with other spectral 

analysis methods is that the curvelet transform takes into account the direction parameter. The curvelet coefficients are 

anisotropic, which can efficiently represent the image edges and fully exploit the image features. The reconstruction equation 

of the coefficients is: 

 200 

𝑓 = ∑ 〈𝑓, 𝜑@,8,B〉𝜑@,8,B@,8,B = ∑ 𝑐(𝑗, 𝑙, 𝑘)𝜑@,8,B@,8,B  .                                                                                                     (7) 

 

An important fact in the practical application of data assimilation methods is the presence of observation errors, which in 

this case is represented by the noise in the observed images. In order to effectively remove the image noise and extract the 

main structural features from the image, we can choose the curvelet coefficients at different scales. A simple “hard threshold” 205 

approach can achieve this goal, by setting the curvelet coefficients below the threshold (represented by 𝜎) to zero. Denoising 

and key-feature selection can be achieved by adjusting the threshold value. 

Figure 1 gives the structural information of the soil moisture image extracted by the curvelet analysis method under 

different threshold conditions on May 1, 2016 in East Asia. From the raw soil moisture image (Fig. 1a), it can be seen that 

soil moisture is low in northwest China and high in the south and east. When the threshold is 0.1 (Fig. 1b), the reconstructed 210 

image reproduces the low-value areas of soil moisture in Northwest China and the high-value areas in eastern and southern 

China, but only represents the large-scale spatial structure features of the raw image. When the threshold value is increased 

to 0.5 (Fig. 1c), the reconstructed image is definitely close to the original image, and the critical features of the reconstructed 

image, such as the dry zone in Xinjiang-Inner Mongolia and the wet area in southeast China and Siberia, are basically 

consistent with those of the original image. Only some small-scale noise information, such as two dry zones located in 215 

northern Tibet and a wet zone near 59°N in northeastern Lake Baikal, has been filtered out. It is shown that the multi-scale 
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structural information of the image could be efficiently extracted by the curvelet analysis method, which provides a basis for 

introducing the spatial structure information of the observed data into the assimilation. 

 
 220 
Figure 1: Soil moisture distributions from (a) the raw image and extracted by curvelet analysis under the thresholds of (b) 0.1 and 

(c) 0.5 on May 1, 2016 in western East Asia. 
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3 Experimental design and error analysis 

3.1 Ideal observation data 225 

Taking the curvelet transform method as the image observation operator, we construct the land surface image assimilation 

system based on Eq. (5). To demonstrate the assimilation effect of the image assimilation system, the idealized data is used 

to examine the ability of the image assimilation method in adjusting the spatial structure of the land surface model variables. 

The soil moisture reanalysis data of the fifth generation ECMWF ReAnalysis Land (ERA5_Land) is chosen as the ideal 

observation data in this study, which has a horizontal resolution of 31 km and a temporal resolution of one hour. The H-230 

TESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) land surface model is used in ERA5_Land 

to output the soil volumetric water content data at four depth layers (0–7, 7–28, 28–100 and 100–289 cm). ERA5-Land is 

more accurate for all land use types with a series of improvements and recalculations based on ERA5. The calculations are 

made without coupling the atmospheric and wave module of ECM-WF/IFS, allowing for a faster update frequency. The 

horizontal and temporal resolutions are respectively increased to 9 km and one hour, and the stratification of output soil 235 

volumetric water content is consistent with that of ERA5 (Sabater et al., 2021). 

3.2 Ideal experimental design 

As shown in Fig. 1a, the selected region for the experiment (73°W-117°W, 23°N-68°N) covers most of the land area of 

China, and the model spatial resolution is 1.4° × 1.4°. The land-atmosphere coupling is the strongest in the western Qinghai-

Tibet Plateau, where soil moisture has a large impact on the climate change and is an essential precursor signal for the 240 

summer precipitation forecasts in eastern China (Yuan et al., 2021). The western arid zone has complex topography, with 

strong spatial heterogeneity in soil moisture. In this region, the surface energy and water vapor budgets also have a crucial 

impact on the climate (Yang et al., 2021). 

The assimilation is run from May 1 to August 31, 2016, and the prediction is made from September 1 to September 30, 

2016. Two sets of experiments are designed. The first sets of experiments perform data assimilation (DA) four times a day 245 

with an interval of 6 hours (at 0000 UTC, 0600 UTC, 1200 UTC and 1800 UTC), and the soil moisture in the surface layer 

of 0–7 cm from ERA5-Land is assimilated. The other group is the control (CTRL) experiment, which has no observations 

assimilated. 

Since it takes a period of time for the model to integrate to adapt to the soil moisture after assimilation, the first 15-day 

results of the experiment are discarded to ensure that the model can reach a new hydrological equilibrium state, which can 250 

make the evaluation of assimilation effect more objective. The analysis in this study mainly focuses on the period from May 

16 to September 30, 2016. To highlight the effect of image assimilation, the other observations are not assimilated in this 

study, that is, 𝐽+ is zero. 
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3.3 Analysis of error characteristics 

 255 

From the cost function shown in Eq. (4), it can be seen that the solution of the cost function also requires the estimation of 

the background field error covariance and the observation error in advance, and the elimination of observation noise in the 

image. To obtain more precise analysis results, we need to accurately estimate the characteristics of various error covariances.

 

 260 

3.3.1 The covariance matrix of background field error 

 

According to the characteristic of single-column model that there is no correlation between the simulation errors at different 

grid points, the covariance matrix of background field error can be directly expressed as the variance of the simulation error 

of the land-surface model at each grid point. 265 

The depths of the top three soil layers in the CoLM model are 0.70 cm, 2.79 cm and 6.22 cm, which are close to the first-

layer depth of the ideal observation data (0-7cm). In this study, the hourly soil moisture data at the top three layers output by 

the land surface model from 2014 to 2015 is used as the background field. The soil moisture reanalysis data of the first 

ERA5_Land layer (0-7 cm) at the same time is interpolated to the depth corresponding to the background field, and then is 

used as the ideal observation data. Based on the difference between the background field and observations, the covariance 270 

matrices of background error are seprately obtained for the soil moisture at each of the top three layers. The error covariance 

between different levels is not considered here. 

Figure 2 shows the distributions of background error covariance for the top three soil moisture layers. It can be seen that 

the soil moisture in the top layer (Fig. 2a) is affected by myriad factors, so its background error is larger than that at the other 

two layers. The spatial characteristics of the background errors at different depths are similar, with relatively small errors in 275 

Xinjiang, northern Tibet and Inner Mongolia, which may be related to the drought in this region. In contrast, in humid areas 

such as Siberia, the soil moisture is affected by additional factors, which causes relatively larger simulation errors. 
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Figure 2: The spatial distributions of soil moisture simulation error variance in the (a) first, (b) second and (c) third layers of the 

common land model (CoLM) during the statistical period from May 16 to September 30, 2016. 280 

3.3.2 Analysis of observation data error 

In image assimilation, the observation noise can be efficiently eliminated by selecting an appropriate threshold value. To 

further objectively determine the threshold, the soil moisture of the ERA5 data at 100 instants is selected as the original 

image. Different threshold values are chosen for de-noising, and the reconstructed images with different degrees of de-

noising are then obtained by inverse curvelet transformation. The threshold selection method is additionally discussed based 285 

on the statistical characteristics of the difference between reconstructed and original images. 

Figure 3 shows the spatial distributions of the mean value of 100 reconstructed fields and the mean value of reconstructed 

errors, based on the raw soil moisture images every 6 hours (0000 UTC, 0600 UTC, 1200 UTC and 1800 UTC) from May 1 

to May 25, 2016, with thresholds being 0.1 and 0.5 separately. As can be seen from the original image (Fig. 3a), in terms of 

large-scale structural features, soil moisture is relatively low in the central part of the selected region (from Xinjiang and 290 

northern Tibet to Mongolia), while it is relatively high in the surrounding of low-value areas. High-value centers of soil 

moisture are found in the southern Siberian Plain, east of Lake Baikal, eastern China, and south of the Tibetan Plateau. When 

the threshold is 0.1, the average distribution of the reconstructed field (Fig. 3b) reproduces the large-scale characteristics of 
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the original field that the low soil moisture is located in the middle and surrounded by high value centers. However, there are 

large errors between the reconstructed field and the original field (Fig. 3c). In particular, the spatial distribution of errors is 295 

similar to that of the large-scale original field, which indicates the loss of spatial structure information of the observations. 

When the threshold increases to 0.5, the spatial correlation coefficient (SCC) between reconstructed field (Fig. 3d) and 

original field is greater than 0.99, and the multi-scale features of the original field are properly reflected. As can be seen from 

Fig. 3e, the errors between the reconstructed and original fields are basically within 0.02, and the error distribution presents 

no obvious spatial structure characteristics. 300 

 
Figure 3: The spatial distributions of (a) original soil moisture, (b, d) reconstructed soil moisture and (c, e) reconstruction errors 

under the threshold values of 0.1 (b, c) and 0.5 (d, e) averaged from May 1 to May 25, 2016.  
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To better clarify the statistical characteristics of the reconstruction errors under different thresholds, Figure 4 shows the 

probability density distribution curves of the reconstruction errors for 100 reconstructed fields at different thresholds. For the 305 

error at the threshold of 0.5, the skewness coefficient of the probability density distribution curve is 0.00 and the kurtosis 

coefficient is 0.38, indicating the curve is close to the standard normal distribution curve (the skewness and kurtosis 

coefficients are all 0). With the gradual increase of the threshold value, although the reconstruction error decreases, the 

residual error is mainly concentrated in the range of smaller values, and the curve shows a "sharp peak" distribution. 

Considering that the observation errors are mostly random errors, it is reasonable to believe that the reconstruction errors at 310 

the threshold of 0.5 are mainly observation errors, which also implies that this threshold is good for the purpose of de-

noising the observation images. 

 
Figure 4: Probability density distributions of 100 reconstructed errors under different thresholds. The magenta dashed line 

represents standard normal distribution; the red, blue, black, green and orange solid lines represent threshold values of 0.4, 0.5, 315 
0.6, 0.7 and 0.8, respectively. 

 

4 Results 

Figure 5 shows the variation of the cost function values with the number of iterations when assimilating ERA5-Land surface 

soil moisture using the image assimilation system at 0000 UTC on May 16, 2016. The criterion of convergence is that the 320 

gradient of the cost function values is less than 10−9. It can be seen that the initial value of the cost function is 1121.0, which 
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has been reduced to 863.1 by the second iteration. The convergence speed of the cost function is relatively fast, and it only 

needs 22 iterations, which also demonstrates the validity and rationality of introducing the image operator term in the cost 

function. The fast convergence speed of the cost function caused by the constraint of the image operator also indicates that 

the assimilation can effectively absorb the spatial structure information of the observation. 325 

 
Figure 5: Variation of the cost function value with the number of iterations using the image assimilation system at 0000 UTC on 

May 16, 2016. 

 

Figure 6 shows the 0-7 cm soil moisture distributions of the observation, the analysis field from the image assimilation 330 

system and the output from CoLM at 0000 UTC on May 16, 2016. It can be seen that the surface soil moisture of ideal 

observations (Fig. 6a) is drier along Mongolia and Xinjiang, but wetter in southern China. The observed soil moisture is also 

relatively high in the vicinity of the Tianshan Mountains, the eastern part of Qinghai-Tibet Plateau and the southern part of 

Lake Baikal, as well as in the eastern parts of Henan Province and Inner Mongolia. However, the results of the CTRL 

experiment (Fig. 6c) show a "high-low-high" distribution from south to north, which is extremely different from the spatial 335 

structure of the observation. It can be seen from the spatial distribution of the analysis field that the soil moisture structures 

are all remarkably improved at different scales (Fig. 6b). In view of large-scale structure, the structural wet bias from 

northwest China to Mongolia can be thoroughly corrected, and the observed structural features of low soil moisture from 

southern Qinghai to southeastern China are nicely reproduced in the analysis field. In addition, some relatively small-scale 

structures, such as the relatively wet soil in the Tianshan Mountains region of Xinjiang, the central part of Qinghai Province, 340 

and the northeastern part of Lake Baikal, are also well represented in the analysis field. 
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Figure 6: Spatial distributions of soil moisture at the depth of 0-7 cm for (a) the observation, (b) the analysis field from the image 

assimilation system and (c) the background field from the CoLM at 0000 UTC on May 16, 2016. 

 345 

Figure 7 shows the spatial distributions of soil moisture at 0-7 cm at 0000 UTC on September 1, 2016 from the 

observation, DA experiment and CTRL experiment. It can be seen from Fig. 7 that, after four consecutive months of cyclic 

assimilation, the large-scale structure of surface soil moisture in the analysis field is much closer to the observation than that 

in the CTRL experiment. The improvement is mainly concentrated in the dry zones along Xinjiang-Mongolia, as well as the 

wet centers in the Tianshan Mountains and central-northern Qinghai Province. The dry tongue from Ningxia Province to 350 

Shanxi Province in China has also been reproduced in the analysis field. In addition, the distribution structure of wet areas in 

the region north of 60°N and east of 111°E has also been thoroughly improved in the analysis field. Overall, the structural 

characteristics of soil moisture at different scales in the analysis field are in better agreement with the observations. 
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Figure 7: The soil moisture at 0-7 cm from (a) the observation, (b) the data assimilation (DA) experiment after 4 months of 355 
continuous assimilation and (c) the control (CTRL) experiment at 0000 UTC on September1, 2016. 

 

Moisture condition of the underlying surface may have some influence on short-term climate anomalies, but whether the 

effect is significant mainly depends on the duration of the underlying surface features. The surface soil moisture is 

considerably affected by external high-frequency perturbations, so the retained anomalous signals are susceptible to 360 

interference, making the anomalous signals difficult to maintain. However, the deep-layer soil moisture has an excellent and 

persistent ability to maintain the abnormally strong signals,, which may have a certain impact on the later climate anomalies 

(Xu et al., 2021). Therefore, it is necessary to conduct further analysis on soil moisture improvement at a deeper level 

through image assimilation system. 

By assimilating the surface soil moisture through the image assimilation system, the deep-layer soil moisture is 365 

simultaneously adjusted under the soil hydrodynamic and thermodynamic constraints of the land surface process model. 

Figure 8 shows the spatial distributions of the ideal soil moisture observation and the soil moisture predictions from the DA 

and the CTRL experiments at the depth of 7-28 cm at 0000 UTC on September 1, 2016 after the final assimilation. 
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It can be seen that the distribution pattern of deep-layer soil moisture observation (Fig. 8a) is relatively consistent with that 

of the surface-layer soil moisture. This essentially shows that the region from Xinjiang to Mongolia is an arid region, while 370 

the relatively high soil moisture regions are located in southern-southeastern China, and the Siberian Plain. The high-value 

centers for the surface and deep soil are practically the same, but overall, the deep soil is wetter than the surface. The 

analysis field of image assimilation (Fig. 8b) shows drought in the southern part of Mongolia, which is consistent with the 

observation. At the same time, the high-value centers near Novosibirsk, the Tianshan Mountains and the central part of 

Qinghai Province are also well reproduced. It indicates that the image assimilation also has excellent results in improving the 375 

spatial structure of soil moisture at deeper layers. 

 
Figure 8: Same as Fig. 7, but for the soil moisture at the depth of 7-28 cm. The pentagram shows the station location for the single-

site analysis in Fig. 10. 

 380 

To quantitatively assess the effect of image assimilation in improving the spatial structure of model soil moisture, the 

SCCs between the ideal observation and model outputs with and without assimilation are calculated and shown in Fig. 9. It 

can be seen that the SCC of the DA experiment is already much higher than that of the CTRL experiment after the first 
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assimilation, with the SCC increased from 0.44 to 0.76. This proves that the image assimilation can quickly and effectively 

adjust the spatial structure of soil moisture. During the period of cyclic assimilation period, the SCC can be maintained 385 

above 0.6 with an average value of 0.67, which is steadily higher than that of the CTRL experiment. This indicates the image 

assimilation effectively improves the spatial structure of soil moisture, making it more consistent with the observation. The 

SCC of the DA experiment is also higher than that of the CTRL experiment in the one-month prediction stage after 

September 1, indicating that the optimization of the soil moisture spatial structure by image assimilation could have a 

obvious positive impact on the prediction in the following month. 390 

Soil moisture is relatively more stable at subsurface depths. The SCC of subsurface soil moisture between observation and 

CTRL experiment is 0.31 at the initial time, which increases to 0.53 by introducing image assimilation. After cyclic 

assimilation, the mean value of the SCC between observation and DA experiment increases from 0.41 to 0.57, which is 

higher than that between observation and the CTRL experiment throughout the entire assimilation period. This indicates that 

by optimizing the spatial structure of the soil moisture in the surface layer, the soil moisture in the deeper layers is also 395 

favorably improved. In the prediction stage, the SCCs between the DA experiment and the observation are always higher 

than those between observation and the CTRL experiment. The mean value reaches 0.63, suggesting that optimization of 

surface soil moisture could lead to an excellent improvement in the prediction of deep-layer soil moisture. 

 
Figure 9: Hourly variations of the spatial correlation coefficient of the surface (red and blue solid lines) and subsurface (black and 400 
gray solid lines) soil moisture between the observations and the experiments with (black and red solid lines) and without (black 

and gray solid lines) image assimilation. After the vertical dashed line, it is the prediction period. 

 

   In order to further show the variation characteristics of soil moisture during assimilation, a single-point analysis is also 

performed by using the hourly soil moisture data from observation, DA and CTRL experiments at a single station in the 405 

Tianshan Mountains region of Xinjiang Province. From the hourly variation of 0-7 cm soil moisture (Fig. 10a), it can be seen 

that the observed soil moisture fluctuates around 0.40 while the soil moisture of the CTRL experiment has an obvious 

deviation from the observation, and they have different variation trends. However, the soil moisture slowly adjusts during the 

image assimilation period and gradually approaches the observation from mid-May to mid-June. By late June, the surface 
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soil moisture gradually increases to more than 0.33 m³·m−³, which is closer to the observation. At the prediction period in 410 

September, the soil moisture in the DA experiment is also closer to the observation than that in the CTRL experiment. 

From the hourly variations of soil moisture at 7-28 cm (Fig. 10b), it can be seen that the observed soil moisture in the deep 

layer is more stable than that in the surface layer, and the variation range is smaller, but the trend in the deep layer is 

approximately the same as that in the surface layer. In late May, when the surface soil moisture becomes wetter, the deep-

layer soil moisture in the DA experiment gradually responds, and its value gradually increases and approaches the observed 415 

value. Both in the assimilation and the prediction periods, the soil moisture in the DA experiment is closer to the observation 

than in the CTRL experiment. 

 
Figure 10: Hourly variations of the (a) 0-7 cm and (b) 7-28 cm soil moisture in the observation (black solid lines), DA experiment 

(red solid lines) and CTRL experiment (blue solid lines) at a single station in the Tianshan Mountains region of Xinjiang Province 420 
from May 16 to September 30, 2016. The prediction period is after the vertical dashed line. 

 

The improvement of soil moisture after image assimilation is further evaluated based on the root mean square error 

(RMSE). Figure 11 shows the hourly RMSE variations of surface and subsurface soil moisture in DA and CTRL 

experiments. As can be seen, the RMSE of surface soil moisture in the CTRL experiment is larger with mean value of 0.16 425 

m³·m−³, and the RMSE fluctuates considerably due to the influence of additional factors. The RMSE is fundamentally 
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reduced by about 0.04 m³·m−³ after image assimilation, which also indicates that the image assimilation not only optimizes 

the spatial distribution structure of soil moisture, but also has a certain improvement effect on the soil moisture values. In the 

prediction period, the surface layer is more disturbed by atmospheric forcing, so the RMSE at surface layer gradually 

increases with time, but the RMSE of DA experiment is also consistently smaller than that of the CTRL experiment. 430 

    The RMSEs of subsurface soil moisture in both experiments are smaller than that of the surface soil moisture. Although 

the initial error is larger, but it gradually decreases with time and shows a stable variation. The mean RMSE of the 

subsurface soil moisture in the CTRL experiment is about 0.15 m³·m−³, while it reduces to 0.12 m³·m−³ after assimilation. 

Similarly, the RMSEs of the DA experiment are steadily less than those of the CTRL experiment in both cyclic assimilation 

and prediction periods. 435 

 
Figure 11: Hourly variations of the soil moisture RMSEs for the DA (red and black solid lines) and CTRL experiments (gray and 

blue solid lines) at the surface (blue and red solid lines) and subsurface layers (black and gray solid lines) in the study area. 

 

5 Discussion and conclusions 440 

Currently, the dominant land surface assimilation systems are mostly single-column assimilation systems. Due to the strong 

spatial heterogeneity of the land surface, the continuity of the spatial structure of soil variables is frequently overlooked. 

Improving the spatial structure accuracy of soil moisture anomalies will help to improve the predictability of short-term 

climate change caused by soil moisture anomalies. 

   Nowadays, more and more information is presented in the form of images or sequences of images. In this study, we 445 

developed an image assimilation system to quantitatively utilize the observed structural information of the variables 

presented in the image, so as to improve the spatial structure accuracy of the initial soil moisture field. This image 

assimilation system is mainly based on the 3D variational assimilation framework with the image term added as a constraint, 

and it is constructed by using the anisotropic and multiscale curvelet transform methods as image structure operator. By 
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efficiently extracting valuable structural information from observed images, the spatial structure of the soil moisture analysis 450 

field is remarkably optimized, and the accuracy of soil moisture quantities is also improved. 

   The performance of the image assimilation system is verified based on the ideal experiment. It is found that the image 

assimilation system can effectively and reasonably improve the spatial structure of the analysis field by assimilating the 

observed images of surface soil moisture. The SCC between the analysis field and observation has increased from 0.39 to 

0.67, and the RMSE has reduced from 0.16 m³·m−³ to 0.12 m³·m−³. At the same time, the spatial structure of the subsurface 455 

soil moisture is further improved after efficiently optimizing the surface soil moisture structure, under the reasonable 

constraints of the model dynamics and thermal processes. The SCC increases from 0.35 to 0.57, and the RMSE is reduced 

from 0.15 m³·m−³ to 0.13 m³·m−³. During the entire assimilation and prediction period, the SCCs and RMSEs of the surface 

and subsurface layer in the DA experiment are better than in the CTRL experiment. 

It should be pointed out that the image assimilation system constructed in this study can remarkably improve the spatial 460 

structure similarity between the analysis field and the observed image by assimilating the effective structure observations in 

the image, and improve the simulation accuracy of soil moisture in the land surface process model as well. 

   However, at present, this study is only based on ideal experiments to verify the performance of image assimilation. In the 

subsequent study, the direct assimilation of geostationary and polar-orbiting satellite brightness temperature observation 

images based on the image assimilation system will be considered. Then, we can obtain a higher precision and more accurate 465 

spatially-structured soil-moisture initial field, and further improve the short-term climate prediction level. In this way, the 

great application potential of image assimilation can be better demonstrated. 

 

Code and data availability. The code of the Common Land model (CoLM) version 2014 was obtained from 

http://globalchange.bnu.edu.cn/research/models (Ji et al., 2014). The atmospheric forcings and CoLM rawdata for making 470 

land surface data are also available at http://globalchange.bnu.edu.cn/research/models (Qian et al., 2005). The ECMWF 

ERA5-Land hourly data from 1981 to present (Muñoz Sabater et al., 2019) were acquired from the Copernicus Climate 

Change Service (C3S) Climate Data Store (https://doi.org/10.24381/cds.e2161bac, last access: 11 February 2022). The code 

of the Common Land model (CoLM) version 2014, and the source code of the newly image data assimilation sysytem, as 

well as the data process software codes, and the model outputs data have been uploaded to Zenodo repositories, which are 475 

available at https://doi.org/10.5281/zenodo.10068298 (Shen, W., 2023). 
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